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ABSTRACT 

Background: Acetylcholinesterase (AChE) and Superoxide Dismutase 1 (SOD1) are pivotal enzymes in cholinergic 
neurotransmission and redox homeostasis, respectively. Aberrations in their expression and function are closely associated with 
neurodegenerative conditions such as Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). The present study aims to 
perform STRING-based network and structural analysis of AChE and SOD1 proteins to highlight neurodegenerative cascades in the 
mouse brain. 
Methods: This study employed in silico tools to compare the protein–protein interaction (PPI) networks of mouse AChE and SOD1 
using the STRING database and evaluated their tertiary structures using AlphaFold-predicted models and PyMOL visualization.  
Results: STRING analysis revealed distinct PPI landscapes, with AChE associated with synaptic and neuromuscular proteins and 
SOD1 strongly linked with redox regulatory proteins. Structural modeling demonstrated unique functional folds: AChE possesses a 
deep catalytic gorge and β-sheet-rich structure, while SOD1 forms a metal-binding β-barrel core.  
Conclusion: The combined network and structural insights reinforce the significance of these proteins in neuromuscular integrity 
and oxidative defense, providing a foundation for further experimental validation and therapeutic exploration. 
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INTRODUCTION 

Acetylcholinesterase (AChE) and Superoxide Dismutase 1 

(SOD1) are two pivotal enzymes involved in neural 

function, though operating in distinct biological domains. 

AChE is responsible for the rapid hydrolysis of 

acetylcholine in the synaptic cleft, thereby ensuring the 

timely termination of cholinergic neurotransmission [1,2].  
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The enzyme is highly expressed in neuromuscular 

junctions and central synapses, and its dysregulation has 

been associated with Alzheimer’s disease (AD), 

Parkinson’s disease, and various forms of neurocognitive 

decline [3–5]. Neurocognitive decline, including memory 

impairments and behavioural changes caused by 

dementia, severely impairs a person’s ability to live 

independently [6]. 

Therapeutic modulation of AChE forms the basis of 

current symptomatic treatments for AD, particularly 

through the use of AChE inhibitors like donepezil and 

rivastigmine [7,8]. AChE is also implicated in non-

cholinergic functions such as cell adhesion and 

apoptosis, further extending its neurobiological 

significance [9,10]. 
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SOD1, in contrast, catalyzes the dismutation of 

superoxide anions (O₂⁻) into molecular oxygen and 

hydrogen peroxide, forming the first line of defense 

against reactive oxygen species (ROS)-mediated toxicity 
[11,12]. It plays a crucial role in maintaining redox 

homeostasis in the brain and peripheral tissues. 

Mutations in the SOD1 gene, such as A4V and G93A, are 

causative of familial Amyotrophic Lateral Sclerosis (fALS), 

with toxic gain-of-function effects due to protein 

misfolding and aggregation [13–15]. Additionally, oxidative 

stress and mitochondrial dysfunction involving SOD1 

have been reported in a range of neurodegenerative 

diseases, including AD, Huntington’s disease, and 

multiple sclerosis [16,17]. 

Mouse (Mus musculus) models have been extensively 

used to study the functions of AChE and SOD1 due to 

their high sequence homology and physiological 

relevance to humans [18,19]. Deciphering the structural 

and interaction networks of these enzymes can 

illuminate therapeutic avenues, especially for oxidative 

neurodegeneration and cholinergic dysfunction. 

In this study, we present a comparative in silico 

bioinformatics analysis of AChE and SOD1 in the mouse 

model. The approach involves protein-protein 

interaction (PPI) network mapping using the STRING 

database and 3D structure prediction via AlphaFold, 

followed by visualization and structural annotation with 

PyMOL. This integrative study seeks to provide a 

molecular framework for understanding their roles in 

neurophysiology and disease. 
 

MATERIALS AND METHODS 

Place of the study- The present study was conducted in 

February 2025 by a research team of the Molecular 

Neuroscience and Drug Designing Lab of the Department 

of Zoology, University of Rajasthan. 
 

Protein Selection- The UniProt entries for mouse AChE 

(P21827) and SOD1 (P08228) were used for all analyses. 

These proteins were selected due to their relevance in 

neurodegeneration and the availability of validated 

structural and functional data. 
 

STRING Interaction Analysis- The STRING database 

(v12.0; https://string-db.org) was employed to analyze 

PPI networks. Parameters were adjusted to a high 

confidence interaction score (≥0.700). Evidence channels 

considered included experimental data, curated 

databases, co-expression, and text mining. Ten top 

interactors were selected for visualization.  
 

3D Structure Prediction and Visualization- Predicted 3D 

models were retrieved from the AlphaFold Protein 

Structure Database (https://alphafold.ebi.ac.uk/). 

Structural visualization and annotation were performed 

using PyMOL (v2.5.2). Active sites and conserved motifs 

were highlighted. Comparison of structural domains was 

based on topology and secondary structure elements. 

Metal ion binding sites in SOD1 were evaluated by 

aligning with crystallographic data (PDB ID: 2C9V). 
 

Ethical Consideration- All analyses were conducted in 

silico and did not involve live animals or human 

participants. 
 

RESULTS 

The AChE interaction network (Fig. 1) revealed high-

confidence links to proteins involved in synaptic 

anchoring (PRIMA1), neuromuscular junction 

organization (COLQ), and receptor clustering (RAPSN). 

These associations reflect its role in neuromuscular 

cholinergic transmission. Additional interactors included 

butyrylcholinesterase (BChE) and DOK7. Protein–protein 

interaction network highlighting high-confidence 

interactors (confidence ≥ 0.7): PRIMA1, COLQ, RAPSN, 

ACHE dimerization partners, and neuromuscular junction 

components. Edge thickness correlates with interaction 

confidence. 
 

 
Fig. 1: STRING network of mouse AChE 

 

The SOD1 network included interactions with copper 

chaperone for SOD (CCS), glutathione peroxidase 1 

(GPX1), and catalase (CAT). These proteins are integral to 

maintaining oxidative balance and scavenging ROS. High 
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interaction scores were also noted with peroxiredoxins 

and thioredoxin (Fig. 2). STRING network illustrating key 

oxidative defense interactions: CCS, GPX1, CAT, SOD1 

dimerization. Strong experimental and database 

evidence shown by the network edges. 

 
Fig. 2: STRING network of mouse SOD1 

 

The AlphaFold-predicted structure of AChE (Fig. 3) 

exhibited a globular architecture with a central β-sheet 

flanked by α-helices. The active site is located within a 

deep and narrow gorge composed of conserved 

residues: Ser203, His447, and Glu334. This arrangement 

is critical for substrate specificity and rapid catalysis. 

Cartoon representation of the AChE monomer: central 

β-sheet core and surrounding α-helices. The catalytic 

triad (Ser203, Glu334, His447) is highlighted in stick form 

(red). 
 

 
Fig. 3: AlphaFold-predicted 3D structure of mouse AChE 

 

The SOD1 model (Fig. 4) revealed a compact β-barrel 

core with a Greek-key topology. Metal-binding sites were 

visible with Cu2+ and Zn2+ coordinated by conserved 

histidine residues. These structural features facilitate 

redox catalysis and oligomerization. Ribbon diagram 

showing the β-barrel fold of SOD1 with bound Cu and Zn 

ions at the active site (represented as colored spheres: 

Cu in orange, Zn in gray). Metal-coordinating residues 

are shown in sticks (green). 
 

 
Fig. 4: AlphaFold-predicted 3D structure of mouse SOD1 

 

DISCUSSION  

The comparison of AChE and SOD1 in mice highlights 

distinct yet critical structural and functional 

characteristics, each tailored to their neurophysiological 

roles. AChE plays an essential part in synaptic 

transmission by catalyzing the hydrolysis of acetylcholine 

at cholinergic synapses, thereby ensuring signal fidelity 

and preventing overstimulation [1]. The interaction of 

AChE with synaptic proteins such as PRIMA1, COLQ, and 

RAPSN underlines its anchoring mechanism at the 

neuromuscular junction and central synapses [4,20]. 

Structurally, AChE is defined by a deep, narrow catalytic 

gorge lined by aromatic residues, facilitating selective 

substrate guidance to the active site, which comprises 

the catalytic triad Ser203, Glu334, and His447 [21]. This 

unique arrangement allows for rapid substrate 

hydrolysis. The peripheral anionic site (PAS) of AChE also 

plays a crucial role in modulating enzyme activity and has 

been implicated in amyloid-β fibrillogenesis in AD, 

further linking cholinergic dysfunction with 

neurodegeneration [22,23]. 

SOD1, on the other hand, is central to cellular 

antioxidant defense. It catalyzes the dismutation of 

superoxide radicals into hydrogen peroxide and 

molecular oxygen, thus mitigating oxidative stress—a key 
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factor in the progression of neurodegenerative diseases 
[11]. The β-barrel structure of SOD1 and its Greek-key 

motif confer high structural stability, crucial for redox 

reactions [24]. 

Mutations in the SOD1 gene can compromise metal ion 

coordination—especially Cu2+ and Zn2+ binding—and 

promote protein misfolding, aggregation, and ultimately 

motor neuron toxicity, as evidenced in fALS [15]. 

Additionally, misfolded SOD1 has been found to exert 

toxic effects through mitochondrial dysfunction, glial 

activation, and disruption of axonal transport in ALS 

models [25]. 

Together, these findings support a dual therapeutic 

strategy: targeting AChE to restore or modulate 

cholinergic neurotransmission, and enhancing SOD1 

stability or mimicking its activity to combat oxidative 

stress in the central nervous system (CNS). Such 

integrative approaches may offer disease-modifying 

potential in AD, ALS, and related neurodegenerative 

disorders. 
 

CONCLUSIONS 

The STRING network bioinformatic analysis of AChE and 

SOD1 highlights their distinct protein interactions and 

structural characteristics in the mouse brain, which 

reveals the pathways that may contribute to neuronal 

function and vulnerability. AlphaFold-based structural 

modelling further demonstrated functional 

conformational differences, providing insights into their 

roles in oxidative stress and synaptic regulation. These 

findings enhance our understanding of how AChE and 

SOD1 contribute to neurodegenerative processes and 

may inform the design of targeted preclinical 

interventions. By integrating network and structural 

analyses, the current study establishes a comprehensive 

framework for exploring therapeutic strategies aimed at 

modulating these proteins.  

The findings open avenues for experimental validation in 

murine models to clarify roles in neuronal signalling, 

oxidative stress, and synaptic maintenance. Integration 

with multi-omics data (transcriptomics, metabolomics) 

may uncover novel neurodegenerative pathways and 

support targeted therapies to mitigate neuronal damage 

and improve brain health. 
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