Phytochemical and Pharmacological Significance of Genus: Impatiens

Pratap Singh¹, Rajendra Singh¹, Nitin Sati², Vivek Ahluwalia¹, Om Prakash Sati¹
¹Department of Chemistry, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
²Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India

*Address for Correspondence: Pratap Singh, Research Scholar, Department of Chemistry, HNB Garhwal University, (A Central University), Srinagar, Garhwal, Uttarakhand, India

Received: 25 September 2016/Revised: 13 November 2016/Accepted: 16 December 2016

ABSTRACT- The genus Impatiens (Compositae) was reviewed for its chemical constituents and biological significance and its traditional uses. The genus has been known for its various biological activities like: antimicrobial activity, antioxidant activity, antiallergic activity, antipruritic activity, antidermatitic activity, transcriptional activity, anti-rheumatoid arthritis activity, anti-histamine activity, testosterone 5α-reductase inhibitory activity, cyclooxygenase-2 inhibitory activity and anti platelet activating activity. Most of the plants of this genus are rich sources of napthoquinones, flanonoids, glycosides and sapogenins. The bioactive constituents or plant extracts may be used for treatment of various diseases and these would be used as a new formulation for the novel drugs discovery in pharmaceutical industries. This review presents comprehensive information on the chemistry and pharmacology of the genus together with the traditional uses of many of its plants. In addition, this review discusses the structure-activity relationship of different compounds as well as recent developments and the scope for future research in this aspect.

Key-words: Antiallergic, Antidermatitic, Antipruritic, Flavonoids, Impatiens, 2-Methoxy-1, 4-Napthoquinone

INTRODUCTION

Impatiens sulcata Wallich in Roxb. (Balsaminaceae) syn. Impatiens gigantea Edgew is an annual or biennial herb 50 to 250cm high, found in North-West Himalayas. It is hairless and similar to Himalayan balsam. Its leaves are generally rounded teeth and not acute as Himalayan balsam. Fruit is linear where as it is club-shaped and flowers are pink, purple with darker spotted sac like lower sepal.

TRADITIONAL USES

Impatiens sulcata Wallich in Roxb. (Balsaminaceae) is a medicinal plant used in folk medicine for treatment of several ailments. In traditional medicine, most of the plants belong to the genus Impatiens has been used to treat a wide variety of ailments such as treatment of articular rheumatism, bruises, beriberi.

It is used for antimicrobial, antirheumatic, antipruritic and antitumoural purposes as well as for the treatment of difficult labour and puerperal pain. The seeds of Impatiens balsamina have been used to treat difficult labour, to suppress puerperal pain, expectorant, to act as an emmenagogue, and as an antidote for poisoning from fish in some countries (Ching et al., 1977; Perry et al., 1980). In Thailand, Impatiens balsamina has traditionally been used for the treatment of thorn or glass-puncture wounds, abscesses, ingrown nails and chronic ulcers caused by allergic reaction of detergents (Fransworth et al., 1992). The aerial parts of Impatiens balsamina are used in Chinese herbal medicine to treat articular rheumatism, beriberi, bruises pain and swelling (Su et al., 1997).

In some areas of Japan, juice squeezed from the white corolla of Impatiens balsamina is painted topically on the skin as an antipruritic to treat several types of dermatitis including urticaria, antianaphylactic (Ishiguro et al., 1992; Ishiguro et al., 1994; Fukumoto et al., 1996); antihistamine (Fukumoto et al., 1995); antipruritic (Ishiguro et al., 1997; Ishiguro et al., 1998); anti-platelet-activating factor (Oku et al., 1999); anti-dermatitic (Oku et al., 2001). Traditionally, the dried herb is either boiled in water to make a tea used to treat systemic bacterial and fungal infections or applied directly on the skin or nails in a plaster form to treat local infections (Yang et al., 2001). The plants is traditionally used in scrofulosos, carbuncles, dysentery (Kang et al., 1992); isthmus and crural aches,
fractures, superficial infections, fingernail inflammation (Jiang et al., 2003); tumor, difficult labor and puerperal pain (Yang et al., 2001); and as emetic, cathartic, diuretic, and for pain in the joints (Ghani, 2003). Ayurvedic system of medicines describes the oil of the plants *Impatiens scabraida* to be used as a semidrying oil (Yadawa et al., 1992); whole plant of *Impatiens textori* has been used for detoxication and treatment of carbuncle and contusion in Chinese medicine (Chang et al., 1977). It is also used for decreasing the blood pressure and inflammation (Ueda et al., 2005). Aerial parts of *Impatiens emirnensis Bak* are used as antimalarial remedy in Madagascar (Rasoanaivo et al., 1992). Rhizomes of *Impatiens prizelli* were used as a traditional treatment of rheumatoid arthritis, diarrhea, and acute abdominal pain (Wan et al., 1989). *Impatiens sificul* were used traditional Chinese medicine in the treatment of rheumatoid pain and paralysis, burns, scalds, and fractures (State Administration of Traditional Chinese Medicine, 1999).

Impatiens parviflora has been widely used in traditional medicine in Asia to treat rheumatism, fractures, infection and in some area of China people ingest this plant as a vegetable or use as anti-cancer herb (Ding et al., 2008). In America *Impatiens capensis* has been used to treat hives, and rashes caused by other plants (Henn, 2008). It is also used to prevent poison ivy rash by rubbing it on the skin prior to known exposure or immediately after coming in contact with poison ivy (Foster et al., 1990).

CHEMICAL CONSTITUENTS

The plants of the genus *Impatiens* contain various types of secondary metabolites including terpenoids, steroids, flavonoids, naphthoquinones and many others. The plants and their chemical constituents have been summarized below and the chemical structures of various compounds isolated from different parts of genus *Impatiens* are drawn in Figures 1-91.

Impatiens balsamina

2-methoxy-1,4-naphthoquinone (1) (Panichayupakaranant P et al., 1995; Fukumoto et al., 1996; Ishiguro et al., 1997; Isiguro et al., 1998; Oku et al., 1999; Yang et al., 2001; Oku et al., 2002; Ding et al., 2008; Mori et al., 2011; Wang et al., 2012; Sakunphueak et al., 2013); lawsonone (2-hydroxy-1,4-naphthoquinone) (2) (Panichayupakaranant et al., 1995; Fukumoto et al., 1996; Ishiguro et al., 1997a; Ishiguro et al., 1997b; Oku et al., 1999; Oku et al., 2001; Ishiguro et al., 2002; Motz et al., 2012); kaempferol (3) (Fukumoto et al., 1996; Ishiguro et al., 1997a; Ishiguro et al., 1997b; Lim et al., 2007); kaempferol-3-O-glucoside (4) (Fukumoto et al., 1996; Ishiguro et al., 1997a; Ishiguro et al., 1997b; Oku et al., 1999); kaempferol-3-O-rutinoside (5) (Fukumoto et al., 1996; Ishiguro et al., 1997a; Ishiguro et al., 1997b; Oku et al., 1999; Oku et al., 2001; Ishiguro et al., 2002); kaempferol 3-rhamnosyldiglucoside (6) (Fukumoto et al., 1996; Ishiguro et al., 1997a; Ishiguro et al., 1997b; Oku et al., 1999); kaempferol-3-O-β-D-glucopyranoside (7) (Mori et al., 2011); 7-hydroxy-6-methoxyconmarin (scopoletin) (8) (Panichayupakaranant et al., 1995; Oku et al., 2002); impatineol (9) (Ishiguro et al., 2000; Oku et al., 2002a; Oku et al., 2002b); quercetin (10) (Fukumoto et al., 1996; Ishiguro et al., 1997; Oku et al., 1999; Lim et al., 2007); quercetin-3-O-glucoside (11) (Oku et al., 1999); quercetin-3-O-rutinoside (12) (Fukumoto et al., 1996; Ishiguro et al., 1997; Oku et al., 1999); di(2-hydroxy-1,4-naphthoquinone-3)-methane (13) (Panichayupakaranant et al., 1995; Fukumoto et al., 1996); balsaminone A (14), balsaminone (B) (15), balsaminone A acetate (16) (Ishiguro et al., 1998); spirosterol (17), isoferaxidin (18) (Panichayupakaranant et al., 1995); 2,3-dihydroxy-1,4-naphthoquinone (19), 2-hydroxy-3-methoxy-1,4-naphthoquinone (20), p-hydroxybenzoic acid (21), p-coumaric acid (22), furulic acid (23), 2,2′-methylenbis(3-hydroxy-1,4-naphthoquinone) (24) (Oku et al., 2002); 2-hydroxy-3-(2-hydroxyethyl)-1,4-naphthoquinone (25) (Oku et al., 2002a; Oku et al., 2002b); impatienolate (26), balsaminol (27) (Oku et al., 2002); hosenkol B 3-O-β-D-xlyopyranosyl(1→2)-β-D-glucopyranosido-26-O-β-D-glucopyranoside (28), hosenkol C 3-O-β-D-xlyopyranosyl(1→2)-β-D-glucopyranosido-28-O-β-D-glucopyranoside (29), hosenkol B 3-O-β-D-xlyopyranosyl(1→2)-β-D-glucopyranoside (30), hosenkol B 3-O-β-D-glucopyranosido-26-O-β-D-glucopyranoside (31), hosenkol A 3-O-β-D-glucopyranosido-26-O-β-D-glucopyranosido-28-O-β-D-glucopyranoside (32), hosenkol A 3-O-β-D-glucopyranosido-1→2)-β-D-glucopyranoside (33), hosenkol A 3-O-β-D-glucopyranosido-28-O-β-D-glucopyranoside (34), hosenkol D 3,28-O-diglucoside (35), presapogenin (IV) hosenkol A 3-O-β-D-glucopyranoside (36) (Shoji et al., 1994); presapogenin (II) hosenkol C 3-O-β-D-glucopyranosido-28-O-β-D-glucopyranoside (37), presapogenin (III) hosenkol C 3-O-β-D-glucopyranoside (38), presapogenin (I) hosenkol B 3-O-β-D-glucopyranoside (39), hosenkol A 40, hosenkol B (41), hosenkol C (42) (Shoji et al., 1994a; Shoji et al., 1994b); hosenkol A 3-O-β-D-xlyopyranosyl (1→2)-β-D-glucopyranosyl-28-O-β-D-glucopyranoside (43), hosenkol A 3-O-β-D-xlyopyranosyl(1→2)-O-β-D-glucopyranosido-26-O-β-D-glucopyranosido-28-O-β-D-glucopyranoside (44), hosenkol D 3-O-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl-28-O-β-D-glucopyranoside (45), 24R/25R hosenkol A (46) (Shoji et al., 1994); flavonoid-3-β-D-glucosidases (Boylan et al., 1969).
Impatiens textori

Apigenin (47), apigenin 7-glucoside (48), luteolin (49) (Ueda et al., 2003; Ueda et al., 2005; Iwaoka et al., 2010); quercetin (10), kaempferol (3), kaempferol 3-glucoside (4) (Ueda et al., 2003; Iwaoka et al., 2010); chrysoeriol (50), quercetin 3-glucoside (11), kaempferol 3-rhamnosylglucoside (6) (Ueda et al., 2003); luteolin 7-glucoside (51) (Iwaoka et al., 2010); pigment (I) malvidin 3-[6-(3-hydroxy-3-methylglutaroyl)-glucoside (52), pigment (II) malvidin 3-(6”malonyl ”)-glucoside (Tatsuzawa F et al., 2009).

Impatiens scabraida

Gossypetin7-O-β-D-glucopyranoside, D-glucose (54) (Yadava et al., 1992).

Impatiens glandulifera

2-Methoxy-1,4-naphthoquinone (1) (Chapelle et al., 1973); 1,2,4-trihydroxy napthalene-1-O-glucoside (53) (Triska et al., 2013).
Impatiens siculoﬁr

Impatienosides (A) (55), impatienosides (B) (56), impatienosides (C) (57), impatienosides (D) (58), impatienosides (E) (59), impatienosides (F) (60), impatienosides (G) (61), 3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucuronopyranosyl-soyasapogenol (A) (66), 3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucuronopyranosyl-22-O-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl-soya sapogenol (A) (67), soyasapogenin (I) (68), soyasapogenol B monoglucuronide (69), soyasapogenin (IV) (70), soyasapogenin (I) (71), soyasapogenin (I) methyl ester (72), soyasapogenin (II) (73) (Li et al., 2009).
Impatiens parviflora
Caffeoylmalate, 1,2,4-trihydroxynapthalene-1-O-glucoside, feruloylmalate, quercetin -3-O-hexoside, kaempferol-3-O-glucoside (4) (Hromadkova et al., 2014).

Impatiens bicolar
Methyl-4-hydroxyl cinnamate (74), stigmasterol (75), stigmasterol 3-O-β-D-glucoside (76), β-sitosterol (77) (Qayyum et al., 2013); naringenin 4'-O-β-D-glucuronopyranoside (78), naringenin 4'-O-α-L-rhamnopyranoside (79), naringenin 4'-O-β-D-xylopyranoside (80), naringenin 4'-O-β-D-glucuronopyranoside, kaempferol 7-O-β-D-glucopyranoside (81), quercetin 3-O-β-D-glucopyranoside (82), kaempferol 5-O-β-D-xylopyranoside (83), kaempferol 3-O-β-D-galactopyranoside (84), kaempferol 7-O-β-D-xylopyranoside (85) (Hasan et al., 2005).
Impatiens pritzellii

Echinocystic acid (86), 3-O-β-D-glucuronopyranosyl echinocystic acid (87), 3-O-[(6-O-methyl)-β-D-glucuronopyranosyl] echinocystic acid (88) 3-O-[(6-O-ethyl)-β-D-glucuronopyranosyl] echinocystic acid (89), 3-O-[(6-O-n-butyl)-β-D-glucuronopyranosyl] echinocystic acid (90) and 3-O-[(6-O-n-butyl)-β-D-glucuronopyranosyl]-28-O-β-D-xylopyranosyl-(1-4)-α-L-rhamnopyranosyl-(1-2)-β-D-xylopyranosyl echinocystic acid (91) (Zhou et al., 2008).

Biological activities of genus Impatiens

Immunomodulatory activity

Immunomodulatory activity of the MeOH extract and the BuOH fraction of Impatiens pritzellii, the collagen-induced arthritis (CIA) model in mice were used and the arthritis indexes, the spleen and thymus indexes, the levels of IgG, IL-10, INF-7 and IL-18 in serum were measured after the treatment of the MeOH extract and the BuOH fraction of Impatiens pritzellii in CIA mice. The progression of CIA was evaluated by macroscopic scoring. Administration of the MeOH extract at dose of 1.12 g/kg and the BuOH fraction at 0.53 g/kg suppressed the development of CIA in mice significantly. The spleen and thymus indexes were decreased the spleen and thymus increased significantly. The spleen and thymus indexes were measured and the levels of IgG, IL-10, INF-7 and IL-18 in serum were examined after the treatment of the MeOH extract (1.12 and 1.68 g/kg body weight) and the BuOH fraction (0.40 and 0.53 g/kg body weight). Administration of the MeOH extract and the BuOH fraction of Impatiens pritzellii decreased the spleen and thymus.
indexes, down-regulated the levels of IgG, INF-7, IL-18, and up-regulated the concentration of IL-10 in the serum of mice with CIA. From the results, it was concluded that administration of *Impatiens pritzellii* had obviously therapeutic effects on RA including immunomodulatory activity. Moreover, the BuOH fraction exerted the activity of anti-RA of *Impatiens pritzellii* (Zhou et al., 2007).

Antianaphylactic activity

The ethyl acetate and n-BuOH extracts of *Impatiens balsamina* showed significant anti-anaphylactic activity. The Lawson (2-hydroxy-1,4-naphthoquinone) from ethyl acetate extract and nicotiflorin from the n-BuOH extract are the active principles of *Impatiens balsamina*. To investigate the anti-anaphylactic activities, the extract and isolated compounds were administered in different phases of anaphylactic response and different routes (scheme 1: antianaphylactic effect before production antibody) an extract (100 mg/kg/1 mL saline) or an isolated compound (10 mg/kg/1mL saline) from *Impatiens balsamina* was administered orally. One day before sensitization with HEL to normal mice on day 0. On day 9 each mouse was challenged with HEL after a test bleeding for heterologus PCA reation (n=10 per group). (Scheme 2: anti-anaphylactic effect after production of antibody) an extract (100mg/kg) or an isolated compound (10 mg/kg) from *Impatiens balsamina* was administered and HEL sensitized mice 1h before challenge with HEL on day 9. The time dependence of anti-anaphylactic effect of *Impatiens balsamina* after production of antibody in vivo assay *Impatiens balsamina* of 256 mg/kg (maximum dose possible) was administered intravenously 10, 30 and 60min before challenge (Fukumoto et al., 1996; Ishiguro et al., 1997).

The anti-anaphylactic activities of a 35% EtOH extract of the flowers of *Impatiens textori* were investigated by in vivo assay. Apigenin, apigenin 7-glucoside and luteolin are principal compounds from *Impatiens textori*, inhibited compound 48/80 (COM)-induced by blood pressure (BP) decrease, which was an immunoglobulin (Ig)E-independent anaphylaxis-like response. Compounds apigenin, apigenin 7-glucoside and luteolin all inhibited BP decrease induced by IgE-dependent anaphylaxis. Furthermore, *Impatiens textori* also inhibited the blood flow (BF) decrease induced by antigen-induced anaphylaxis in actively sensitized mice. *Impatiens textori* showed a significant inhibitory effect on scratching behavior induced by COM without a central depressant (Ueda et al., 2005).

Anti-fungal activity

Seeds of *Impatiens balsamina* contain a set of related antimicrobial peptides (Ib-AMPs). Analysis of the antifungal activity of the antimicrobial peptides Ib-AMP1 and Ib-AMP4, isolated from *Impatiens balsamina* seeds was studies. It was shown moderate antifungal activity of these peptides can be drastically reduced in the presence of cations (Thevissssen et al., 2005). The antimicrobial activity of methoxy naphthoquinone was evaluated using eight fungal strains as well as all eight fungi (including multi-drug resistant strains) tested were highly sensitive to methoxy naphthoquinone. The antimicrobial activity of *Impatiens balsamina* is due to the presence of methoxy naphthoquinone. Methoxy naphthoquinone, or a crude *Impatiens balsamina* extract containing it, may yet prove to be a useful alternative for the treatment of systemic fungal infections, particularly those involving multi-drug resistant strains (Yang et al., 2001).

The antifungal activities of *Impatiens bicolor* plant extracts in different solvent system by the disc diffusion assay were also studied. The antifungal activity was determined in comparison with fluconazole. EtOAc extract showed highest activity all the fungal strains which is also statistically comparable with fluconazole (Anwer et al., 2013).

Antibacterial activity

95% ethanol extract of the dried aerial parts of *Impatiens balsamina* subsequently identified as2-methoxy-1,4-naphthoquinone. The antimicrobial activity of 2-methoxy-1,4-naphthoquinone was evaluated using 12 bacterial strains (five gram-positive and two gram-negative bacteria). Twelve bacterial strains were used in this study including gram-positive cocci (*Staphylococcus aureus* 236 and *S. aureus* Cowan), gram-positive rods (*Bacillus cereus*, *B. megaterium* and *B. subtilis* 168), gram-negative rods (*Aeromonas salmonicida* A449, *Burkholderia cepacia*, *Enterobacter aerogenes* 62-1, *Escherichia coli*, *Proteus mirabilis*, and *Salmonella typhimurium*), and gram-negative helical cells. Thus, all five gram-positive bacteria and two of the gram-negative ones were sensitive to 2-methoxy-1,4-naphthoquinone. The increased sensitivity of gram-positive bacteria over gram-negative bacteria. Of the five gram-negative strains that were insensitive to 2-methoxy-1,4-naphthoquinone, only two (*B. cepacia* and *S. typhimurium*) were sensitive to chloramphenicol. The remaining three (*Enterobacter aerogenes*, *Escherica coli* and *P. mirabilis*) showed no inhibition to either compound at 30 g/mL. Of particular note, however, is the gram-negative bacterium *Aeromonas salmonicida* A449, which was acutely sensitive to 2-methoxy-1,4-naphthoquinone but almost unaffected by chloramphenicol. In fact, with 30 g/mL chloramphenicol, *A. salmonicida* showed no growth inhibition in the disc diffusion assay (Yang et al., 2001). The *in vitro* antibacterial activity against antibiotic-resistant *Propionibacterium acnes* of kaempferol isolated from the *Impatiens balsamina* alone and in combination with erythromycin or clindamycin antibiotics was investigated. The antibiotic combination effect against antibiotic-resistant *Propionibacterium acnes* was studied by checkerboard test. Kaempferol and quercetin demonstrated antibacterial activity against *P. acnes* bateria. Minimum inhibitory concentrations (MICs) for both compounds were ≤32 μg/mL and ≤64 μg/mL for
clindamycin-sensitive and -resistant *P. acnes* (Lim et al., 2007). Antibacterial activity of ethanol extract (4 mg/mL) of *Impatiens balsamina* on some bacterial strains by disc diffusion assay, results indicated that ethanol leaf extracts from *Impatiens balsamina* regardless of harvest time possess the greatest inhibitory activity, and they showed strong antimicrobial activity against bacterial strains (Kang et al., 2013).

The air-dried powdered plant materials of *Impatiens bicolar* extracted with different organic solvents was screened for biological activities. The antimicrobial activity was determined by the disc diffusion assay against a set of bacterial strains. The antibacterial activity was determined in comparison with ciprofloxacin. Against *E. coli*, the higher activity was shown by methanolic extract followed by EtOAc, n-hexane and CHCl3. For *P. micabilus*, n-hexane extract showed better activity followed by MeOH, EtOAc and CHCl3 extract. Against *S. typhimorium*, EtOAc showed highest activity which is also statistically comparable with fluconazole and meftanol also showed good activity against *S. typhimorium* followed by n-hexane and CHCl3 (Anwer et al., 2013).

Anti allergic activity

The white flower of *Impatiens balsamina* extracted with ethanol and isolated the compounds (kaempferol-3-rutinoside, 2-hydroxy-1,4-naphthoquinone) were dissolved in 100 μL saline/10gm body weight. Immunisation with HEL was performed. Male ddY mice 5 weeks of age, were sensitized intraperitonially on day 0 with 50 μg of HEL emulsified in Freund’s complete adjuvant on day 9 each mouse was challenged intravenously with 100 μg of HEL in 30 μL saline. Blood flow in the mouse tail was monitored using a laser Doppler blood flow meteron the non contact type. The blood flow of the venous microcirculation of the tail hypodermic of the unanesthetized mouse of measured every 2 min it was ca 50% less than normal blood flow under anesthesia (Ishiguro et al., 2002).

The allergy preventive activity of a 35% ethanol extract of *Impatiens textori* was demonstrated in a continuing search for allergy preventive substances from natural sources. The activity used in vivo assay methods for monitoring the blood flow decrease in the tail vein microcirculation of mice subjected to sensitization with hen egg white lysozyme. The principal compounds in *Impatiens textori*: apigenin and luteolin 7-glucoside showed significant allergy preventive effect (Iwaoka et al., 2010).

Antipruritic activity

The antipruritic activity of compounds isolated from the fresh pericarp of *Impatiens balsamina* effects of orally administered 1,4-naphthoquinone derivatives and related compounds on compound 48/80-induced scratching behavior in mice was studied. 2-Hydroxy-3-(2-hydroxyethyl)-1,4-naphthoquinone, ferulic acid, 2,2-methylenebis (3-hydroxy-1,4-naphthoquinone), and 2,2-ethylidenebisis (3-hydroxy-1, 4-naphthoquinone) all exhibited significant antipruritic activity (Ishiguro k et al., 1998; Oku K et al., 2002). A 35% ethanol extract of white petals of *Impatiens balsamina* significantly inhibited the scratching behaviour. Kaempferol, quercetin and 1,4-naphthoquinone derivatives in IB were showed antipruritic effects (Ishiguro et al., 1997; Oku et al., 2001).

The anti-pruritic activities of a 35% EtOH extract of the flowers of *Impatiens textor* were investigated by in vivo assay. Apigenin, apigenin 7-glucoside and luteolin are principal compounds from *Impatis textor* which inhibited activity. It also significantly inhibited platelet activating factor (PAF)- and serotonin (5-HT)-induced scratching behavior and mitigated protease (PA)-induced scratching behavior. These findings showed that the flowers of *Impatiens textor* can be utilized as an anti-pruritic agent in addition to the traditional applications of this plant (Ueda et al., 2005).

Antidermatitic activity

Total 35% Ethanolic extract from the petals of *Impatiens balsamina* and principal active compound from *Impatiens balsamina* was studied in chronic and serious pruritus and the development of dermatitis using the NC mice a model of atopic dermatitis. *Impatiens balsamina* at 100 mg/kg significantly inhibited serious scratching behavior in the NC mouse with established dermatitis when administered 1h before 24hour before the measurement. A 10 μg/kg of kaempferol 3-rutinoside and 2-hydroxy-1,4-naphthoquinone isolated from *Impatis balsamina* also inhibited scratching behavior in the NC mouse with established dermatitis. *Impatis balsamina* was effective for the prevention and treatment of atopic dermatitis (Oku et al., 2001).

Transcriptional activity

The aerial part of *Impatiens balsamina* led to the isolation of 2-methoxy-1,4-naphthoquinone as an active compound inhibited the TCF/β-catenin (TOP) transcriptional activity (IC50= 2.9 μM), while it decreases the transcriptional activity of FOP (muted TCF-binding site) transfected cells at >5 μM. The Wnt signaling pathway plays main role in cell morphology, motility, proliferation and differentiation. Wnt/β-catenin signaling can also lead to the formation of tumors when aberrantly activated. Wnt signaling activates gene transcription by forming a complex between DNA-binding proteins of the TCF/LEF family and β-catenin. SuperTOPFlash, a β-catenin-responsive reporter plasmid with multiple TCF-binding sites (CCTTGATC), was activated in cells. SuperFOP-Flash has eight mutated TCF-binding sites (CCTTGGCC), and a selective inhibitor would prevent any enhancement of transcription in SuperFOP-Flash transfected cells thus, the ratio of TOP/FOP-Flash reporter activity provides a measure of the selective inhibition of Wnt signaling. The result inhibition of TCF/β-catenin (TOP) transcriptional activity along with those for cell viability, since a decrease in cell number may

Copyright © 2015-2017 IJLSSR by Society for Scientific Research under a CC BY-NC 4.0 International License
contribute to the inhibition. 1 exhibited dose dependent inhibition of TOP activity (IC_{50} 2.9 I M) (Mori et al., 2011).

Anti-rheumatoid arthritis activity

Rheumatoid arthritis (RA) is a kind of chronic inflammatory and inflammatory disease. *Impatiens pritzellii* has been well known and widely used in China as an anti-rheumatoid arthritis (anti RA herbs). One of the most widely used models for studying rheumatoid arthritis is collagen induced arthritis (CIA) in mice, which shows many features with human rheumatoid arthritis. CIA in mice is an autoimmune type of arthritis, which display many characteristics in common with human RA. Four MeOH extract treated groups, the progression of arthritis, evaluated as arthritis indexes, was dramatically inhibited at the dose of 1.12 g/kg, and these had no effect at the doses of 0.56 and 2.24 gm/kg. The BuOH fraction at the dose of 0.53 gm/kg was the most effective, and the dose of 0.13 and 0.27 g/kg were inefficacious (Zhou et al., 2007).

Anti-Histamine activity

Ethanol extract of white petal of *Impatiens balsamina* showed the anti-histamine effects. *Impatiens balsamina* could incompletely inhibit the first stage of hypotension caused by histamine. The antianaphylactic effect of *Impatiens balsamina* was demonstrated to be different from that of diphenhydramine a typical H blocker (Fukumoto et al., 1999).

Testosterone 5α-Reductase Inhibitory activity

The 35% EtOH extract of aerial parts of *Impatiens balsamina* has been investigated for activity against testosterone 5α-reductase. Activity-guided fractionation led to the identification of the bisnaphthoquinone derivative named as impatienol and 3-hydroxy-2-[(3-hydroxy-1,4-dioxo (2-naphthyl)] ethyl naphthalene-1,4-dione, which exhibited significant testosterone 5α-reductase inhibitory activity (Ishiguro et al., 2000).

Cyclooxygenase-2 Inhibitory activity

Compounds isolated from the corolla of *Impatiens balsamina* (two new 1,4-naphthoquinone sodium salts, sodium 3-hydroxide-2{(sodium 3-hydroxide-1,4-dioxo(2-naphthyl)ethyl]naphthalene-1,4-dione (impatienolate) and sodium 2-hydroxide-3(2-hydroxyethyl)naphthalene-1,4-dione (balsaminolate)), showed significant selective cyclooxygenase-2 (COX-2) inhibitory activities (Oku H et al., 2002).

Anti Platelet Activation activity

Several phenolic compounds which were isolated from *Impatiens balsamina* showed significant inhibitory PAF-antagonistic effects. The principal compounds from *Impatiens balsamina* kaempferol 3-glucoside, kaempferol 3-rutinoside, kaempferol 3-rhamnosyldiglucoside, quercetin, quercetin 3-glucoside and 2-hydroxy-1,4-naphthoquinone were shown to significantly inhibit PAF-induced hypotension. Those inhibitory effects were stronger than CV-3988, a PAF antagonistic agent (Oku et al., 1999). A 35% EtOH extract of flowers of *Impatiens textori* showed an inhibitory effect on blood pressure decrease in response to platelet activating factor measured with a blood pressure monitoring system. Bioassay-guided fractionation of the 35% EtOH extract of *Impatiens textori* led to isolation of the flavones apigenin and luteolin, which significantly inhibited blood pressure decrease in response to platelet activating factor (Ueda et al., 2003).

Anti-Tumor activity

Leaves of *Impatiens balsamina* have anti-tumor activity against the human hepatocellular carcinoma cell line HepG2. The ethanol extracts were separated into five fractions according to polarity. Only the chloroform fraction had a strong tumor inhibition ratio (IC_{50}= 6.47 ± 0.05 mg/L), which was superior to that of curcumin (IC_{50}= 13.95±0.11 mg/L). However, the final active component was isolated and identified as 2-methoxy-1,4-naphthoquinone. 2-Methoxy-1,4-naphthoquinone has intensive *in vitro* anti-tumor activity against HepG2 cells (Ding et al., 2008).

O-Methyltransferase Activity

The presence of O-methyltransferase is of interest in plant tissue, which produces methylated anthocyanins and hydroxycinnamic acids. It will be important to determine whether the absence of methylated anthocyanins and low levels of ferulic acid in the red genotype and the methylated anthocyanins and high levels of ferulic acid in the purple genotypes can possibly be correlated with the O-methyltransferase activities of these tissues. *Impatiens balsamina* gives O-methyltransferase activity (Masell et al., 1971).

Antinociceptive activity

The extract was evaluated for antinociceptive activity using chemical and heat Induced pain models. Methanol extract of *Impatiens balsamina* (MIB) demonstrated strong and dose-dependent antinociceptive activity in all the chemicals and heat-induced mice models (P<0.05). MIB also showed significant central nervous system depressant effect (P<0.05). Antinociceptive activity of the flowers of *Impatiens balsamina* and rationalized the traditional use of the flower in the treatment of different painful condition (Imam et al., 2012).

Anti-gastric Adenocarcinoma activity

2-Methoxy-1,4-naphthoquinone from *Impatiens balsamina* exhibited strong anti-*H. pylori* activity. 2-Methoxy-1,4-naphthoquinone resulted in the serious necrosis via superoxide anion catastrophe when the treatment doses were higher than 50µM, whereas apoptosis occurred at low treatment doses (25–50µM) through the caspase-dependent apoptosis pathway. Necrosis is the dominant mode of cell death. 2-Methoxy-1,4-naphthoquinone exhibited high ability to...
induce gastric adenocarcinoma necrosis, showing good potential as a candidate agent for H. pylori infection related disease therapy (Wang et al., 2012).

Interleukin-18 Inhibitory Activity

Echinocystic acid and 3-O-[(6-O-n-butyl)-β-D-glucuronopyranosyl]-28-O-[β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl] echinocystic acid obtained from the active fraction of *Impatiens pritzellii* var. *hupehensis*, which is a traditional Chinese medicine for rheumatoid arthritis, these are investigated for their effects on lipopolysaccharide (LPS)-induced interleukin (IL)-18 in human peripheral blood mononuclear cells, and showed obvious activity to inhibit the production of IL-18, especially the ester saponins with a sugar chain at C-28 (Zhou et al., 2008).

Antiproliferative Activity

Impatiens textori was investigated for antiproliferative activities against human gastric (AGS), human cervical (HeLa), human non-small lung (A549), and human colon adenocarcinoma (HT-29) cancer cell lines. The effect of the ethyl-acetate fraction of *Impatiens textori* of cancer cells was significant, as the extract and other fractions did not exhibit similar inhibitory activity (Yang et al., 2012).

α-Glucosidase Inhibitory activity

Methanol, water and ethyl acetate extracts of *Impatiens textori* were investigated for their α-glucosidase inhibitory activities. Primarily, α-glucosidase inhibitory activities are expressed as IC50 values. Among these, water fraction did not show potent inhibitory activity towards α-glucosidase. Methanol extract (IC50 values of 21.64 ± 0.32 μg/mL) had the lowest activity, and ethyl acetate fraction (IC50 values of 8.56 ± 0.30 μg/mL) had the strongest inhibitory activity (Yang et al., 2012).

Antioxidant activity

Alcoholic extract of *Impatiens bicalcar* and its various fractions were screened for antioxidant potential of DPPH radical scavenging activity. The dichloromethane, ethyl acetate and n-butanol fraction caused 82%, 50% and 34% inhibition, while crude extract showed minimum inhibition i.e. 1.75% only. Excellent free radical scavenging property present in these fractions of *Impatiens bicalcar* may be the reason for its effectiveness in its ethnomedicinal uses against different ailments (Qayum et al., 2013).

CONCLUSIONS

It is quite evident from the literature that plants of the genus *Impatiens* are very potent remedies for various ailments in traditional systems of medicine worldwide. Among them, many plants are neither investigated chemically nor scientifically evaluated for their respective activities. Moreover, a majority of constituents and plant extracts of this genus have not yet been investigated for their biological activity. Therefore, an extensive research was required to find out the biological activity and mechanism action of such constituents. Furthermore, the chemically unknown species may become a source of novel drugs; therefore, a detailed chemical analysis is required to isolate bio-active constituents from them and to trace out their biological activities. Thus, it can be concluded that the genus *Impatiens* can play an important role in the modern medicinal system in the near future.

REFERENCES

[42] State Administration of Traditional Chinese Medicine, Chinese Meteria Medica (Zhonghua Bencao) Shanghai Science and Technology Press, Shanghai, 1999; 5: 142.

How to cite this article:

Source of Financial Support: Nil, Conflict of interest: Nil

International Journal of Life-Sciences Scientific Research (IJLSSR)
Open Access Policy
Authors/Contributors are responsible for originality, contents, correct references, and ethical issues.
IJLSSR publishes all articles under Creative Commons Attribution-Non-Commercial 4.0 International License (CC BY-NC).
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Copyright © 2015-2017 IJLSSR by Society for Scientific Research under a CC BY-NC 4.0 International License