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ABSTRACT- Every year more than 13 million deaths worldwide are due to environmental pollutants, and 

approximately 24% of diseases are caused by environmental exposures that might be averted through preventive 
measures. Out of all these environmental chemicals, effects of air pollution is responsible for death of 3.3 million people 

prematurely worldwide - a figure that could double by 2050 if emissions continue to rise at the current rate. Increasing 

number of evidences has linked environmental pollutants with epigenetic variations, including changes in DNA 
methylation status, histone modifications and other factors like incorporation of miRNAs, nucleosome remodeling, etc. 

These entire mechanisms are likely to play important roles in disease aetiology, and their modifications, thus providing 

further understanding of disease aetiology, as well as biomarkers for these exposures to environmental chemicals and/or 

prediction of the risk for the disease. In this, we had tried to summarize the different epigenetic alterations related to 
environmental chemical exposures, and propose the probable mechanisms of action behind such epigenetic changes. We 

will also focus onopportunities, challenges and further directions for future epidemiology research in environmental 

epigenomics. Further studies are needed in this regard to solve methodological and practical challenges, including 
uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic 

alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to                           

high-throughput epigenomics. Moreover, there are several reports of epigenetic modifications arising from environmental 

chemical exposures, but most have not been directly linked to disease endpoints. 
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INTRODUCTION  

Being a part of our daily life, chemicals in the day to day 

use may also cause different diseases through various                

mechanisms. Environmental pollutants results                              
inapproximately 13 million deaths approximately every 

year and as much as 24% of the diseases are estimated to be 

caused by environmental exposures that can be prevented 

(Pru¨ss-U¨stu¨n Annette, 2006).Out of all these                           
environmental chemicals, effects of air pollution is                          

responsible for death of 3.3 million people prematurely 

worldwide - a figure that could double by 2050 if emissions 
continue to rise at the current rate (Lelieveld et al., 2015).  
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Growing evidence suggests that environmental pollutants 

may cause diseases via epigenetic mechanism-regulated 
gene expression changes (Tang et al., 2007; Bezeket al., 

2008). Continuous exposure to many chemicals, including 

through air, water, food or other media and products                    
resulting in various diseases and health impacts are well 

assessed, however very little is known about the                          

mechanism at the epigenetic level. This review has tried to 
summarize the effect of different environmental chemical 

exposures on epigenetics of various diseases studied till 

now (Table 1). 

Epigenetics-Linking Factor between Environment 

and different diseases 
Epigenetics defined as heritable changes in gene function 
occuring without a change in the nucleotide sequence 

(Bird, 2007). These changes in phenotypic traits occur due 

to variety of mechanisms (Fradin and Bougneres, 2011). An 
Epigenetic factor that regulates gene expression mostly                      

includes DNA methylations, histone modifications, and 

expression of microRNAs (miRNAs) (Reik et al., 2001; 
Grewal and Moazed, 2003). An epigenetic mechanism that 

modifies chromatin structure can be classified into four 

main categories: DNA methylation, covalent histone                    
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modifications, and non-covalent mechanisms like                    
incorporation of histone variants and nucleosome                       

remodeling and non-coding RNAs including microRNAs 

(miRNAs). 

Epigenetic Changes due to environmental chemical 

exposures 
Changes in these epigenetic factors have been shown to be 
induced by the exposure to various environmental                     

chemicals linked with different diseases (Baccarelli et al., 

2009; Heightman et al., 2011; Wright, 2011).Entire list of 
such epigenetic changes as described by Hou, Zhang, Wang 

and Baccarelli due to different environmental factors like 

pollution, chemicals, pesticides, etc are enlisted in Table 1. 
Various epigenetic mechanisms responsible for it are                       

described below as follows-  

 

DNA Methylation 
Out of all, DNA methylation is the mostthoroughly studied 

epigenetic modification in mammals, playing an important 
role in regulating gene expression and chromatin                        

architecture, in association with histone modifications and 

other chromatin associated proteins. DNA methylation 

mainly occurs by the covalent modification of cytosine        
residues in CpG dinucleotides in mammals. In human             

genome, CpG dinucleotides are not evenly distributed 

across the human genome but are instead concentrated in 
‘CpG islands’ and regions of large repetitive sequences 

(e.g. centromeric repeats, retrotransposon elements, rDNA 

etc.) (Bird, 2002; Takai et al., 2002).  
During development and in differentiated tissues, most of 

the CpG sites in the genome are methylated, but the mostof 

the CpG islands usually remain unmethylated also (Suzuki 

et al., 2008). However, some CpG island promoters get 
methylated during development, resulting in long-term 

transcriptional silencing (Bird, 2002). DNA methylation 

uses various mechanisms to heritably silence genes and 
non-coding genomic regions. DNA methylation can lead to 

gene silencing by either preventing or promoting the                      

recruitment of regulatory proteins to DNA (Prendergastet 

al., 1991; Wattet al., 1988) or can also mediate gene                        
repression through interactions with histone deacetylases 

(HDACs) (Jones et al., 1998; Nan et al., 1998).  

Recent studies have suggested that DNA methylation is 
also important for the regulation of non- CpG island                 

promoters (Futscheret al., 2002; Hattoriet al., 2004). In                 

order to fully understand the global role of DNA                         
methylation in normal tissue,it is essential to elucidate the 

role of non-CpG island methylation, as CpG islands has 

been found to occupy only approximately of 60% of human 

gene promoters(Wang et al., 2004). 

Covalent Histone Modifications 
Histone proteins consist of the nucleosome core, havinga 
globular C-terminal domain and N-terminal tail (Luger et 

al., 1997). The N-terminal tails of histones can undergo a 

variety of posttranslational covalent modifications like                  

methylation, acetylation, ubiquitylation, sumoylation and 

phosphorylation on specific amino acid residues, resulting 
in the regulation of key cellular processes such as                      

transcription, replication and repair (Kouzarides, 2007). 

These modifications are proposed to store the epigenetic 

memory inside a cell in the form of a ‘histone code’ that 
determines the structure and activity of different chromatin 

regions (Jenuweinet al., 2001). Histone modifications take 

place by either changing the chromatin accessibility or by 
recruitment of non-histone effector proteins. The                       

mechanism of inheritance of the histone code, however, is 

still not fully understood. 

Nucleosome Remodelling and Histone Variants 
Non-covalent mechanism of nucleosome remodeling and 

presence of specialized histone variants, sometimes also 
plays an important role in regulation of chromatin structure 

and gene activity. Nucleosomes regulate gene expression 

by altering the accessibility of regulatory DNA sequences 
to transcription factorsin addition to its function as DNA 

packaging within a cell (Jiang et al., 2009). Nucleosome 

free regions (NFRs) present at the 5’ and 3’ends of genes 

provide the sites for assembly and disassembly of the                        
transcription machinery (Yuan et al., 2005). The                        

nucleosome loss directly upstream of the transcription start 

site is strongly correlated with gene activation (Shivaswa-
my et al., 2008; Lin et al., 2007). Moreover, the presence of 

an NFR at gene promoters with basal level of transcription 

is related with the ability for rapid activation upon stimula-
tion (Gal-Yam et al., 2006). In contrast,                  shutting 

off of the transcription start site within the NFR by a nucle-

osome is associated with gene repression (Schones et al., 

2008). NFR modulation is achieved by                             
ATP-dependent chromatin-remodeling complexes, which 

modifies the accessibility of DNA regulatory sitesthrough 

both sliding and ejection of nucleosomes (Smith et al., 
2005). The interaction between nucleosome remodeling 

machinery, DNA methylation and histone modifications 

plays a vital role in establishing global gene expression            

patterns and chromatin design (Harikrishnan et al., 2005; 
Wysocka et al., 2006). 

Non-coding RNA like miRNAs 
miRNAs are small, approximately 22 nucleotides,                    

non-coding RNAs that regulate gene expression through 

posttranscriptional silencing of target genes.                                  

Sequence-specific base pairing of miRNAs with 
3’untranslated regions of target mRNA within the                      

RNA-induced silencing complex results in degradation of 

target messenger RNA or inhibition of translation (He et 
al., 2004). miRNAs are expressed in a tissue-specific                     

manner and control a wide array of biological processes 

including cell proliferation, apoptosis and differentiation. 
The list of miRNAs identified in the human genome and 

their potential target genes is growing rapidly,                              

demonstrating their extensive role in maintaining global 

gene expression patterns (Zhang et al., 2007).  
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Like normal genes, the expression of miRNAs can be regulated by epigenetic mechanisms (Saito et al., 2006). In addition, 
miRNAs can also modulate epigenetic regulatory mechanisms inside a cell by targeting enzymes responsible for DNA 

methylation (DNMT3A and DNMT3B) and histone modifications (EZH2) (Fabbriet al., 2007; Friedman et al., 2009). 

Such interaction among the various components of the epigenetic machinery re-emphasizes the integrated nature of             

epigenetic mechanisms involved in the maintenance of global gene expression patterns. 
 

Table 1: Effect of Environmental Chemicals on epigenetic changes of various diseases 
 

Envi-

ronmental 

Chemicals 

Epigenetic Changes Details of study Diseases studied  References 

Air                 

Pollution 

DNA methylation 

Global hypomethylation 

 

 

 

 

iNOS hypomethylation 
 

 

Global hypermethylation 

 

 

 

 

 

 

 

Hypermethylation of IFNg 

and hypomethylation of 
IL4 

 

Histone modification 

Increased H3K4                  

dimethylation and H3K9 

acetylation 

 

Global hypomethylation 

(Alu, LINE-1) 

 

 

 

miRNAs 

Increased miR-222 

 

 

 

Increased miR-21 

Human PBL (In vivo) 

 

 

 

 

 

Human PBL (In vivo) 
 

 

C57BL/CBA  mice sperm 

(In vivo) 

 

 

 

 

 

 

CD4+T-Lymphocytes                 

(In vivo) 
 

 

Human PBL(In vivo) 

 

 

 

 

Human buffy coat                    

(In vivo) 

 

 
 

 

Human PBL(In vivo) 

 

 

 

Human PBL (In vivo) 

 

Various cancers and         

Schizophrenia 

 

 

 

 

Lung cancer 
 

 

Colorectal cancer 

renal cell carcinoma, 

acute lymphoblastic               

leukaemia and bladder 

urothelial cell carcinoma 

 

 

 

Asthma 

 
 

 

Diabetic nephropathy 

 

 

 

 

Various cancers and              

schizophrenia 

 

 
 

 

Various cancers 

 

 

 

Various cancers 

Baccarelli et al.,2009; Smith et 

al.,2007;Roman-Gomez et 

al.,2006; Deng et al.,2006; 

Brothman et al.,2005;                   

Shimabukuro et al.,2007 

 

Tarantini et al.,2009; 
Pereira et al.,2007 

 

Yauk et al.,2008; Cheetham et 

al.,2008; Alemayehu et 

al.,2008; Norrie et al.,2002; 

Minardi et al.,2009;Schafer et 

al.,2010; Owen et al.,2010 

 

 

 

Liu et al.,2008 

 
 

 

Cantone et al.,2011; Sayyed et 

al.,2010 

 

 

 

Klein et al.,2002; Smith et 

al.,2007; Roman-Gomez et 

al.,2006; Deng et 

al.,2006;Brothman et al.,2005; 
Shimabukuro et al.,2007 

 

Klein et al.,2002;Felli et 

al.,2005; le Sage et al.,2007; 

Garofalo et al.,2009 

 

Klein et al.,2002;Connolly et 

al.,2008; Chan et al.,2005; 

Iorio et al.,2005;Frankel et 

al.,2008; Zhu et al.,2007; 

Schetter et al.,2008; Bloomston 
et al.,2007; Meng et al.,2007 

 

Alumini-

um 

miRNAs 

Increased miR-146a 

 

 

 

 

 

 

HN cells (In vitro) 

 

 

 

 

 

 

 

 AD, cardiac hypertrophy 

and various cancers 

 

 

 

 

 

 

Pogue et al.,2009; Lukiw et 

al.,2008;Pogue et al., 2009; 

Cheng et al.,2007; Volinia et 

al.,2006; Taganov et al.,2006; 

Bhaumik et al.,2008; Shen et 

al.,2008; Calin et al.,2005;Xu 

et al.,2008;Yanaihara et 

al.,2006; Kozaki et al.,2008 
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Increased miR-9, miR-128, 

miR-125b 

HN cells (In vitro) AD, neurodegeneration 

and various cancers 

 

Lukiw et al., 2007; 

Saba et al., 2008; 

Roehle et al., 2008; 

Wang et al., 2008; 

Tan et al., 2010; 

Veerla et al., 2009 
 

Arsenic DNA methylation 

Global hypomethylation 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Global hypomethylation 

and c-Ha-ras                              

hypomethylation 

 
 

 

 

Global hypermethylation 

 

 

 

 

 

 

 
DAPK hypermethylation  

 

 

 

 

 

 

 

 

 

 

P16 hypermethylation 
 

 

 

 

 

 

 

DBC1, FAM83A, 

ZSCAN12 and C1QTNF6 

hypermethylation  

Human HaCaT                   

keratinocytes, human 

prostate epithelial cell line       

RWPE-1, TRL 1215 rat 

liver epithelial cell line, 

V79-Cl3 Chinese hamster 

cells (In vitro) 

 

 

 

 

129/SvJ mice,84 fisher 
344 Rat,86 homozygous 

Tg.AC mice,87                     

goldfish,232 human 

PBL233 (In vivo) 

 

 

 

C57BL/6J mice (In vivo) 

 

 

 
 

 

 

Human PBL (In vivo) 

 

 

 

 

 

 

 
Human uroepithelial  

SV-HUC-1 cells (In vitro) 

 

 

 

 

 

 

 

 

 

Human myeloma cell line 
U266 (In vitro) 

 

 

 

 

 

 

Human UROtsa cells (In 

vitro) 

 

Various cancers and              

schizophrenia 

 

 

 

 

 

 

 

 

 

Various cancers and                
schizophrenia 

 

 

 

 

 

 

Various cancers and               

schizophrenia 

 

 
 

 

 

Colorectal cancer, renal 

cell carcinoma, acute 

lymphoblastic leukaemia 

and bladder urothelial cell 

carcinoma 

 

 

 
Various cancers 

 

 

 

 

 

 

 

 

 

 

Various cancers 
 

 

 

 

 

 

 

Bladder cancer, breast 

cancer and malignant 

lymphoproliferative         

Reichard et al., 2007; 

Benbrahim-Tallaa et al., 2005; 

Coppin et al., 2008; Zhao et 

al.,1997; Sciandrello et 

al.,2004; Smith et 

al.,2007;Roman-Gomez et 

al.,2006; Deng et al.,2006; 

Brothman et 

al.,2005;Shimabukuro et 

al.,2007 

 

Chen et al.,2004; Uthus et 
al.,2005; Xie et al.,2004; 

Smith et al.,2007;                               

Roman-Gomez et al.,2006; 

Deng et al.,2006; Brothman et 

al.,2005;Shimabukuro et 

al.,2007 

 

Okoji et al., 2002; 

Smith et al., 2007;                         

Roman-Gomez et al.,2006; 

Deng et al.,2006; Brothman et 
al.,2005;Shimabukuro et 

al.,2007 

 

Majumdar et al.,2010; Pilsner 

et al.,2007; Cheetham et 

al.,2008; Alemayehu et 

al.,2008; Norrie et al.,2002; 

Minardi et al.,2009; Schafer et 

al.,2010; Owen et al.,2010;  

 

 
Chai et al.,2007; Qian et 

al.,2010; Laytragoon-Lewin et 

al.,2010; Paluszczak et 

al.,2011; Hafner et al.,2011; Li 

et al.,2011; Ben Ayed-Guerfali 

et al.,2011; Sugita et al.,2011; 

Zhang et al.,2011; Hu et 

al.,2010; Van der Auwera et 

al.,2010; Zhang et al.,2011; 

Peng et al.,2010 

 

Fu et al.,2005; Laytragoon-
Lewin et al.,2010; Hu et 

al.,2010; Zhang et al.,2011; 

Malhotra et al.,2010; Poetsch et 

al.,2011; Lin et al.,2012; Wang 

et al.,2011; Zainuddin et 

al.,2011; Shaw et al.,2010 

 

Jensen et al.,2008; Serizawa et 

al.,2011; Hill et al.,2010; 

Gronbaek et al., 2008 
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P53 hypermethylation  

 

 

 
C-myc hypomethylation 

 

 

 

 

 

C-myc and c-Ha-ras                  

hypomethylation 

 

 

 

 
P16 and RASSF1                 

hypermethylation 

 

 

 

 

 

 

 

 

 
Global hypomethylation 

and ER-alpha                              

hypomethylation 

 

 

 

P53 and P16  

hypermethylation  

 

 

 
 

 

 

 

 

DAPK hypermethylation 

 

 

 

 

 

 
 

 

 

 

RASSF1A and PRSS3 hy-

permethylation 

 

 

P16 hypermethylation  

 

 

 

 

Human lung                             

adenocarcinoma A549 

cells (In vitro) 

 
 

TRL 1215 rat liver                 

epithelial cells (In vitro) 

 

 

 

 

Syrian hamster embryo 

cells (In vitro) 

 

 

 
 

A/J mice (In vivo) 

 

 

 

 

 

 

 

 

 
 

C3H mice (In vivo) 

 

 

 

 

 

Human PBL (In vivo) 

 

 

 
 

 

 

 

 

 

Human bladder, kidney 

and ureter (In vivo) 

 

 

 

 
 

 

 

 

 

Human bladder  (In vivo) 

 

 

 

Human PBL (In vivo) 

 

neoplasms 

 

Breast cancer and                   

hepatoblastoma 

 

 
Gastric cancer, colon                  

cancer, liver cancer,               

kidney cancer and bladder 

cancer 

 

 

 

Gastric cancer, colon can-

cer, liver cancer, kidney 

cancer and bladder cancer 

 

 
 

Various cancers 

 

 

 

 

 

 

 

 

 
 

Various cancersand                  

schizophrenia 

 

 

 

 

Various cancers 

 

 

 
 

 

 

 

 

 

Various cancers 

 

 

 

 

 
 

 

 

 

 

Lung cancer and prostate 

cancer 

 

 

Various cancers 

 

 

 

Mass et al.,1997; Radpour et 

al.,2010; Hanafusa et al.,2005 

 

 
Chen et al.,2001; Pereira et 

al.,2001; Luo et al.,2010; Fang 

et al.,1996; Tsujiuchi et 

al.,1999; Shen et al.,1997; Del 

et al.,1989 

 

Takahashi et al.,2002;Pereira et 

al.,2001; Luo et al.,2010; Fang 

et al.,1996; Tsujiuchi et 

al.,1999; Shen et al.,1997; Del 

et al.,1989 

 
Cui et al.,2006;                              

Laytragoon-Lewin et al.,2010; 

Hu et al.,2010; Zhang et 

al.,2011; Malhotra et al.,2010; 

Poetsch et al.,2011; Lin et 

al.,2012; Wang et al.,2011; 

Zainuddin et al.,2011; Shaw et 

al.,2010; Rabiau et al.,2009; 

Buckingham et al.,2010 

 

 
Waalkes et al.,2004; Smith et 

al.,2007; Roman-Gomez et 

al.,2006; Deng et 

al.,2006;Brothman et al.,2005; 

Shimabukuro et al.,2007 

 

Chanda et al.,2006;Laytragoon-

Lewin et al.,2010; Hu et 

al.,2010; Zhang et al.,2011; 

Malhotra et al.,2010; Poetsch et 

al.,2011; Lin et al.,2012; Wang 
et al.,2011; Zainuddin et 

al.,2011; Shaw et al.,2010; 

Radpour et al.,2010; Hanafusa 

et al.,2005 

 

Chen et al.,2007;Qian et 

al.,2010; Laytragoon-Lewin et 

al.,2010; Paluszczak et 

al.,2011; Hafner et al.,2011; Li 

et al.,2011; Ben Ayed-Guerfali 

et al.,2011; Sugita et al.,2011; 

Zhang et al.,2011; Hu et 
al.,2010; Van der Auwera et 

al.,2010; Zhang et al.,2011; 

Peng et al.,2010 

 

Marsit et al.,2006;Rabiau et 

al.,2009; Buckingham et 

al.,2010 

 

Zhang et al.,2007; Laytragoon-

Lewin et al.,2010; Hu et 

al.,2010; Zhang et al.,2011; 
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P53 hypermethylation 
 

 

 

Both hypomethylation and 

hypermethylation of VHL 

 

Histone modification 

Decreased H3 acetylation 

 

 

Decreased H4K16                   

acetylation 
 

Increased H3K14                     

acetylation 

Increased H3S10                      

phosphorylation  

 

Increased H3                       

phosphorylation 

 

Increased H3K9                          

acetylation 
 

 

 

Decreased H3, H4, H2a, 

H2b acetylation  

Decreased H3 and H4       

methylation 

Increased H2b methylation  

 

Increased H3K36                     

trimethylation 
Decreased H3K36                   

dimethylation  

Increased H3K4                      

dimethylation  

 

Increased H3K9                         

dimethylation 

Decreased H3K27                

trimethylation  

Increased H3K4                 

trimethylation  

Increased H2AX                    
phosphorylation  

Decreased H3K18                   

acetylation 

Decreased H3R17                     

methylation  

 

miRNAs 
Increased miR-222,               

Decreased miR-210 

 

 

 

 

 

 

 

 
Human basal cell                        

carcinoma (In vivo) 

 

 

Human kidney cells (In 

vitro) 

 

 

UROtsa and URO-ASSC 

cells (In vitro) 

 

UROtsa cells (In vitro) 
 

 

NB4 cells (In vitro) 

 

 

 

 

WI-38 human diploid 

fibroblast cells(In vitro) 

 

HepG2 hepatocarcinoma 
cells(In vitro) 

 

 

Drosophila melanogaster 

tissue culture cell line 

KC161(In vitro) 

 

 

 

 

Human lung carcinoma 
A549 cells (In vitro) 

 

 

 

 

 

Human lung carcinoma 

A549 cells (In vitro) 

 

 

 

 
RPMI7951 melanoma 

cells (In vitro) 

1470.2 cell line derived 

from the mouse a                       

denocarcinoma parent line 

(In vitro) 

 

 

TK6 cell line (In vitro) 

 

 

 

 

 

 

 

 
Breast cancer and                  

hepatoblastoma 

 

 

Renal cell carcinoma 

 

 

 

Renal cell carcinomas 

 

 

Bladder cancer 
 

 

Diabetic nephropathy 

 

 

 

 

Diabetic nephropathy 

 

 

Diabetic nephropathy 
 

 

 

Heart disease and trau-

matic brain injury 

 

 

 

 

 

Diabetic nephropathy, 
multiple myeloma and 

prostate cancer 

 

 

 

 

Prostate cancer, kidney 

cancer, lung cancer, HCC 

and AML 

 

 

 
Ataxia telangiectasia 

 

Prostate cancerand colon 

cancer 

 

 

 

 

Various cancersand AD 

 

 

Malhotra et al.,2010; Poetsch et 

al.,2011; Lin et al.,2012; Wang 

et al.,2011; Zainuddin et 

al.,2011; Shaw et al.,2010 

 

Boonchai et al.,2000;  
Radpour et al.,2010; Hanafusa 

et al.,2005 

 

Zhong et al.,2001 

 

 

 

Jensen et al.,2008; Kanao et 

al.,2008 

 

Jo et al.,2009 

 
 

Li et al.,2002; Sayyed et 

al.,2010 

 

 

 

Li et al.,2003; Sayyed et 

al.,2010 

 

Ramirez et al.,2008; Sayyed et 

al.,2010 
 

Arrigo et al.,1983; Gaikwad et 

al.,2010; Gao et al.,2006 

 

 

 

 

 

Zhou et al.,2008; Sayyed et 

al.,2010; Zhao et al.,2010;               

Seligson et al.,2009 
 

 

 

 

Zhou et al.,2008; Seligson et 

al.,2009; Arita et al.,2009; 

Chen et al.,2010; Yao et 

al.,2010; Paul et al.,2010 

 

 

 

Zykova et al.,2006; Porcedda et 
al.,2008 

Barr et al.,2009; Seligson et 

al.,2009; Ashktorab et al.,2009 

 

 

 

Marsit et al.,2006; Felli et 

al.,2005; le Sage et al.,2007; 

Garofalo et al.,2009; Mi et 

al.,2007; Saumet et al.,2009; 

Hebert et al., 2008 
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Decreased miR-19a 

 

 

 

T24 cell line (In vitro) 

 

 

 

Various cancers 

 

Cao et al.,2011; Takakura et 

al.,2008; Calin et al.,2004; 

Arndt et al.,2009; Bandres et 

al.,2006; Malzkorn et al.,2010; 

Hebert et al.,2007; Budhu et 
al.,2008; Connolly et al.,2008; 

Hayashita et al.,2005 

Benzene DNA methylation 

Global hypomethylation 

(Alu, LINE-1) 

 

 

 

P15 hypermethylation and 

melanoma antigen-1 

(MAGE-1)                               

hypomethylation 

 
 

 

 

 

 

 

 

 

Global DNA hypomethyla-

tion 

 
 

 

 

Hypermethylation of poly 

(ADP-ribose)                           

polymerases-1 (PARP-1) 

Human PBL (In vivo) 

 

 

 

 

 

Human PBL (In vivo) 

 

 

 

 
 

 

 

 

 

 

 

 

Human lymphoblastoid 

cell line TK6 (In vitro) 

 
 

 

 

Lymphoblastoid cell line 

F32 (In vitro) 

Various cancers and             

schizophrenia 

 

 

 

 

Psoriasis and various           

cancers 

 

 

 
 

 

 

 

 

 

 

 

Various cancers and           

schizophrenia 

 
 

 

 

Various cancers 

 

 

 

Baccarelli et al.,2009; Smith et 

al.,2007; Roman-Gomez et 

al.,2006; Deng et 

al.,2006;Brothman et al.,2005; 

Shimabukuro et al.,2007 

 

Kim et al.,2007; Bassil et 

al.,2007; Koutros et al.,2010; 

Waggoner et al.,2011; Bollati et 

al.,2007; Zhang et al.,2009; 

Furonaka et al.,2004; Lindberg 
et al.,2008; Kim et al.,2009; 

Shimamoto et al.,2005; Chen et 

al.,2002; Gallardo et al.,2004; 

El-Shakankiry et al.,2006; 

Matsuno et al.,2005; Wemmert 

et al.,2009; Berg et al.,2007; 

Wong et al.,2003 

 

Ji et al.,2010; Smith et 

al.,2007; Roman-Gomez et 

al.,2006; Deng et 
al.,2006;Brothman et al.,2005; 

Shimabukuro et al.,2007 

 

Gao et al.,2010 

Bisphenol 

A 

DNA methylation 
Hypomethylation of the 

Agouti gene and CabpIAP 

 

 
 

Hypomethylation of the 

homeobox gene Hoxa10 

 

Hypermethylation of 

LAMP3. 

 

miRNAs 

Increased miR-146a 

Mouse embryo (In vivo) 

 

 

 

 
 

CD-1 mice (In vivo) 

 

 

Breast epithelial cells                      

(In vitro) 

 

 

3A placental cells                     

(In vitro) 

Mice with                                 

hypomethylation of the 

Agouti gene are obese, 

diabetic and exhibit                 

increased cancer rates 
 

Not applicable 

 

 

Breast cancer 

 

 

 

Cardiac hypertrophy,               

AD and various cancers 

 

Dolinoy et al.,2007; Morgan et 

al.,2010; Xiang et al.,2010 

 

 

 
 

Bromer et al.,2010; 

 

 

Weng et al.,2010; 

 

 

 

Whiting et al.,2010; Lukiw et 

al.,2008; Pogue et al.,2009; 

Cheng et al.,2007; Volinia et 

al.,2006; Taganov et al.,2006; 
Bhaumik et al.,2008; Shen et 

al.,2008; Calin et al.,2005; Xu 

et al.,2008; Yanaihara et 

al.,2006; Kozaki et al.,2008;  
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Cadmium DNA methylation 

Global DNA 

hypomethylation 

 

 

 
Initially induces DNA        

hypomethylation,                     

prolonged exposure results 

in DNA hypermethylation 

 

miRNAs 

Decreased miR-146a 

K562 cell (In vitro) 

 

 

 

 

 
TRL1215 rat liver cells    

(In vitro) 

 

 

 

 

Human PBL (In vivo) 

 

Colorectal cancer, renal 

cell carcinoma, acute 

lymphoblastic                    

leukaemia,bladder                     

urothelial cell carcinoma 

 
Not applicable 

 

 

 

 

 

Various cancers 

Huang et al.,2008; Cheetham et 

al.,2008; Alemayehu et 

al.,2008; Norrie et al.,2002; 

Minardi et al.,2009; Schafer et 

al.,2010; Owen et al.,2010 

 
Takiguchi et al.,2003;  

 

 

 

 

 

Bollati et al.,2010; Gramantieri 

et al.,2007; Jazdzewski et 

al.,2008; Lin et al.,2008 

 Chromium DNA methylation 

P16 and hMLH1                  

hypermethylation 

 

 

 

 

 

 

 
 

Gpt hypermethylation 

 

Histone modification 

Decreased H3S-10 

Phosphorylation 

 

Decreased H3K4                     

trimethylation  

 

Decreased H3 and H4                  
acetylation  

 

Increased Dimethylation 

and trimethylation of 

H3K9 and H3K4 

 

Decreased 

H3K27trimethylation and 

H3R2 dimethylation 

 

 

Human lung (In vivo) 

 

 

 

 

 

 

 

 

 
 

G12 cell line (In vitro) 

 

 

Human lung carcinoma 

A549 cells (In vitro) 

 

Various cancers 

 

 

 

 

 

 

 

 

 
 

Not applicable 

 

 

Type 2 diabetes, heart 

disease and traumatic 

brain injury 

Kondo et al.,2006; Takahashi et 

al.,2005; Laytragoon-Lewin et 

al.,2010; Hu et al.,2010; Zhang 

et al.,2011; Malhotra et 

al.,2010; Poetsch et al.,2011; 

Lin et al.,2012; Wang et 

al.,2011; Zainuddin et al.,2011; 

Shaw et al.,2010; Gonzalez-

Ramirez et al.,2011; Vasavi et 

al.,2010; Ling et al.,2010 
 

Klein et al.,2002 

 

 

Arita et al.,2009; Sayyed et 

al.,2010; Gaikwad et al.,2010; 

Gao et al.,2006 

DES 

 

miRNAs 

Decreased miR-9-3 

Breast epithelial cells (In 

vitro) 

 

Breast cancer 

 

 

Hsu et al.,2009 

Dioxin DNA methylation 

Igf2 hypomethylation 

 

 

 
 

Alterations in DNA              

methylation at multiple 

genomic regions 

 

miRNAs-  

Increased miR-191 

Rat liver (In vivo) 

 

 

 

 
 

Splenocyte of mice (In 

vivo) 

 

 

 

Rat liver(In vivo) 

 

Russell–Silver syndrome 

and various cancers 

 

 

 
 

Not applicable 

 

 

 

 

Breast cancer, 

colorectal cancer and 

gastric cancer 

 

 

Wang et al.,2007; Gucev et 

al.,2009; Zeschnigk et al.,2008; 

Chopra et al.,2010; Dammann 

et al.,2010; Baba et al.,2010; Li 

et al.,2009; Cui et al.,2002; Ito 
et al.,2008 

McClure et al.,2011 

 

 

 

 

 

 

Elyakim et al.,2010; Iorio et 

al.,2005; Volinia et al.,2006 

Xi et al.,2006;  

Drinking 

Water 

DNA methylation 

Global hypomethylation  

c-myc hypomethylation 

Mice liver (In vivo) 

 

Gastric cancer, colon            

cancer, liver cancer,            

kidney cancer and bladder 
cancer 

 

Pereira et al.,2001; Coffin et 

al.,2000; Luo et al.,2010; Fang 

et al.,1996; Tsujiuchi et 
al.,1999; Shen et al.,1997; Del 

et al.,1989 
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Lead DNA methylation 

Global hypomethylation 

Human PBL, newborn 

umbilical cord blood 

samples(In vivo) 

 

Various cancersand              

schizophrenia 

Wright et al.,2010; Pilsner et 

al.,2009; Smith et al.,2007; 

Roman-Gomez et al.,2006; 

Deng et al.,2006;Brothman et 

al.,2005; Shimabukuro et 

al.,2007 

Mercury DNA methylation  
Global hypomethylation 

 

Rnd2 hypermethylation 

Brain tissues in polar 
bear(In vivo) 

 

Mouse embryonic stem 

cells(In vitro) 

 

Neurological disorders 
and various cancer 

 

Neuronal migration defect 

Pilsner et al.,2010; Mill et 
al.,2008; Wang et al.,2008; 

Esteller et al.,2008 

 

Arai et al.,2011; Heng et 

al.,2008 

Nickel DNA methylation 

ATF-1, HIF-1, gpt and Rb 

hypermethylation 

 

 

 

P16 hypermethylation 
 

 

 

 

 

 

Histone modification 

 Increased H3K9                   

methylation 

Decreased Acetylation at 

all four core histones 

 
Increased H3K9                          

dimethylation  

Increased H2a, H2b 

ubiquitylation 

Decreased H3K4                       

methylation  

Decreased H3K4                           

acetylation  

Decreased H2a, H2b, H3, 

H4 acetylation 

 
DecreasedH4K5, H4K8, 

H4K12, H4K16 acetylation 

 

DecreasedH2A, H2B, H3, 

H4 acetylation (especially 

in H2BK12 and H2BK20) 

 

 

Increased H3 phosphoryla-

tion 

G12 cell line (In vitro) 

 

 

 

 

 

Mouse histiocytomas (In 
vivo) 

 

 

 

 

 

 

Human lung carcinoma 

A549 cells (In vitro) 

 

 

 
Human lung carcinoma 

A549 cells,G12 cells, 

1HAEo- cell line, human 

(HAE) and rat (NRK) 

cells, Chinese hamster 

cell line (In vitro) 

 

 

 

 

 
Human lung carcinoma 

A549 cells (In vivo) 

 

Human airway epithelial 

1HAEo(HAE) cell line 

(In vitro) 

 

 

Human lung carcinoma 

A549 cells (In vitro) 

 

Various cancers 

 

 

 

 

 

Various cancers 
 

 

 

 

 

 

 

Heart disease and                       

traumatic brain injury 

 

 

 
Lung cancer, heart                    

disease, chronic                      

glomerular disease and 

traumatic brain injury 

 

 

 

 

 

 

 
Ataxia telangiectasia 

 

 

Heart disease and                  

traumatic brain injury 

 

 

 

Diabetic nephropathy 

 

Lee et al.,1995; Chim et 

al.,2003; Stirzaker et al.,1997; 

Chen et al.,2004; Zhao et 

al.,2010; Zhao et al.,2003; Li et 

al.,1998 

 

Govindarajan et al.,2002;                 
Laytragoon-Lewin et al.,2010; 

Hu et al.,2010; Zhang et 

al.,2011; Malhotra et al.,2010; 

Poetsch et al.,2011; Lin et 

al.,2012; Wang et al.,2011; 

Zainuddin et al.,2011; Shaw et 

al.,2010 

Chen et al.,2006; Ke et 

al.,2006; Gaikwad et al.,2010; 

Gao et al.,2006 

 

 
Lee et al.,1995; Karaczyn et 

al.,2005; Karaczyn et al.,2006; 

Broday et al.,2000; Chen et 

al.,2006; Ke et al.,2006; Klein 

et al.,1997; Yan et al.,2003; 

Arita et al.,2009; Gaikwad et 

al.,2010; Gao et al.,2006; Chen 

et al.,2010; Lefevre et al.,2010 

 

 

 
Broday et al.,2000; Kumar et 

al.,2011 

 

Golebiowski et al.,2005; 

Gaikwad et al.,2010; Gao et 

al.,2006; 

 

 

Ke et al., 2008; Sayyed et al., 

2010 

Pesticides DNA methylation 

P53 hypermethylation 
 

Alter DNA methylation in 

the germ line 

 

 

Hypomethylation of c-jun 

Human lung adenocarci-

noma A549 cells (In vitro) 
 

Rat testis (In vivo) 

 

 

 

Mouse liver (In vivo) 

Breast cancer and                  

hepatoblastoma 
 

Potential effects in the 

offspring 

 

 

Gastric cancer, colon               

Mass et al.,1997; Radpour et 

al.,2010; Hanafusa et al.,2005 
 

Anway et al.,2005;                       

Guerrero-Bosagn et al.,2010; 

Anway et al.,2006 

 

Tao et al.,2000; Pereira et 
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and c-myc 

 

 

 

 

Global hypomethylation 
(Alu) 

 

 

 

 

 

Both hypomethylation and 

hypermethylation of VHL 

 

Histone modification- 

Increased Ac of H3 and H4 

 

 

 

 

 

Human PBL(In vivo) 
 

 

 

 

 

 

Human kidney cells         

(In vitro) 

 

 

Immortalized rat                  

mesencephalic/                         
dopaminergic cells (N27 

cells) (In vitro and in               

vivo) 

 

cancer, liver cancer, kid-

ney cancer and bladder 

cancer 

 

 

 
Various cancersand schiz-

ophrenia 

 

 

 

 

Renal cell carcinoma 

 

 

 

Parkinson’s disease 

al.,2001; Luo et al.,2010; Fang 

et al.,1996; Tsujiuchi et 

al.,1999; Shen et al.,1997 Del 

et al.,1989 

 

Rusiecki et al.,2008; Kim et 
al.,2010; Smith et al.,2007; 

Roman-Gomez et al.,2006; 

Deng et al.,2006;Brothman et 

al.,2005; Shimabukuro et 

al.,2007 

 

Zhong et al.,2001 

 

 

 

Song et al.,2010 

RDX miRNAs 

Increased let-7, miR-15, 

miR-16, miR-26, miR-181 

Decreased miR-10b 

 

 

 

 
Increased miR-206,                    

miR-30, miR-195 

 

Mouse brain and liver                

(In vivo) 

 

 

 

 

 
Mouse brain and liver                      

(In vivo) 

 

 

Various cancers 

 

 

 

 

 

 
Various cancers 

 

Zhang et al.,2009; Calin et 

al.,2005; Calin et al.,2002; 

Cimmino et al.,2005; Ambs et 

al.,2008; Roccaro et al.,2009; 

Johnson et al.,2005; Lee et 

al.,2007; Yanaihara et al.,2006; 

Sampson et al.,2007 
 

Zhang et al.,2009; Iorio et 

al.,2005; Adams et al.,2007; 

Roccaro et al.,2009; Dixon-

McIver et al.,2008; van Rooij 

et al.,2006; Sayed et al.,2007 
 

PBL: Peripheral blood leucocytes; HCC: Hepatocellular carcinoma; AML: Acute myeloid leukaemia; AD: Alzheimer’s disease; HN cells: 

Human neural cells; RDX: Hexahydro-1,3,5-trinitro-1,3,5-triazine; DES: Diethylstilbestrol. 

 

Suitable study designs, approaches, challenges and 

opportunities for Environmental Epigenomics      

Studies 
The rapid growth of environmental epigenetics field in the 
past several years has led the investigators to face different 

difficulties and challenges as well. Few studies had                   

produced uneven results on same environmental chemicals 

that may be because of several factors. The fact that these 
tissue specific epigenetic alterations (Minard et al., 2009) is 

likely to be acceptable because same environmental                    

chemical might produce different epigenetic changes in 
different tissues, and even it can change within the same 

tissue on different cell types. Difference in study design, 

laboratory methods and small sample size may also be                 

major causes for these inconsistencies in epigenetic                
changes. Replication of results and identification of the 

sources of variability across studies is one of the major 

challenges for epigenetic investigations. There relationship 
between a disease and an epigenetic marker can be               

determined by an effect of disease on the epigenetic                   

patterns, instead of vice versa (Reltonet al., 2010), since  

epigenetic markers change over time. The epigenetic                    

alterations that were found to be induced by or associated 

with environmental pollutants were also found in various 
diseases. Earlier prospective epidemiological studies might 

be helpful for mapping epigenomic changes in response to 

specific chemicals. Methods of collection and processing 

can modify the cell types stored, thus potentially having its 
effect on epigenetic marks. In addition to this, high through 

put methods providing good quality data on DNA                            

methylation, histone modifications and miRNA expression 
are gradually used these days in human investigations. The 

share of the effects of any particular environmental                     

exposure that can mediate through epigenetic mechanisms 
is still undetermined, though epigenetic mechanisms are 

ideal molecular intermediates of environmental effects.                      

Statistical approaches, including well-designed prospective 

studies and advanced statistical methods are urgently         
needed for causal inference in this regard. The                       

epidemiological causal reasoning in epigenomics should 

include careful consideration of knowledge, data, methods 
and techniques from several disciplines similar to genomic 
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studies (Geneletti et al., 2011). 
 

Epigenomics: Can it be used for prevention of              

various diseases 
One of the main objectives behind these epidemiology                  

investigations is to look for future preventive interventions. 

Various clinical and preclinical studies has already showed 
that most of the epigenetic changes are reversible, which 

offers novel insights to develop new preventive and                     

therapeutic strategies in this field that can make use of                   
molecules that alter the activities of epigenetic enzymes, 

such as DNA Methyl Transferases (DNMTs) and Histone 

Deacetylases (HDACs). Drugs have already been designed 
and developed in this regard that produce functional effects 

like histone acetylation and DNA hypomethylation that can 

be used to restore the normal gene transcription. Future 

epidemiology studies and epigenomic research to evaluate 
the effects of environmental exposures on the epigenome 

may provide information for developing preventive                       

strategies, including exposure reduction, along with                   
pharmacological, dietary or lifestyle interventions as well. 
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